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reason to expect that it would also be appro­
priate for noncubic .solicls. In a following section 
it is shown that all the parameters appearing 
in (4) can be satisfactorily estimated for garnet 
hpp. 

In addition to (4), several other expressions 
for the Griineisen parameter have been in com­
mon use by previous investigators in reducing 
shock Hugoniot data [Slater, 1963 ; Dugdale 
and MacDonald, 1953]. These relations for y 
have been based on particular assumptions in­
volving the vibrational modes of lattice dynamic 
models. However, it has been pointed out by 
Knopoff and Shapiro [1969] that the results 
for y(x) 9alculated by these expressions are 
not mutually consistent and do not yield the 
thermodynamic value for y at ambient condi­
tions. Equation 4 avoids these difficulties and 
reduces the number of approximations required 
to a minimum [O'Keeffe, 1970], because y(x) 
has been determined directly from the thermo­
dynamic definition y = v (ap j aE) v, where V 
is the specific volume, rather than from a lattice 
dynamic model. Equation 4 has been used by 
0' Keeffe [1970), to evaluate accurate pressure, 
volume, and temperature relations for copper 
from Hugoniot data. 

The quantities a, C., and 8, which appear in 
(4) , are not available for garnet hpp and there­
fore must be estimated from ancillary data. 
The thermal expansion a is an anharmonic 
paramet~r and as such is difficult to model 
theoretically unless higher-order terms in the 
potential function are defined. It is assumed 
for the present problem that the thermal ex­
pansion of a complex oxide compound can be 
represented by the weighted volumetric average 
of the individual component oxides, provided 
valence and coordination are consistent . That 
IS, 

a = La. V,/ L Vi (6) 

where VI and a·, are the molar volume and the 
thermal expansion of the ith component oxide, 
respectively. From several estimates of the ther­
mal expansion of known silicates using (6), it 
appears that such estimates should be accurate 
to within ±20%. The specific heat at constant 
pressure is estimated according to 

where CPi and M, are the specific heat and the 
gram formula weight of the ith component 
oxide, respectively. Specific heats estimated 
from (7) should be accurate to within ±2% 
on the basis of the results of several calculated 
examples. The appropriate quantities calc~lated 
for garnet hpp by using (6) and (7) are a = 
23(1O-6);oK and Cp = 7.37(10")ergsj g oK. 
Appropriate data for FeO (wustite), MgO, 
AI.03 , and Si02 (stishovite), all of which in­
volve sixfold coordinated cations, were used in 
the calculations. 

Anderson et al. [1968] have compiled values 
of the Anderson-Griineisen parameter 8 for a 
number of oxides and silicates. Although there 
appears to be some correlation between 8 and 
Yo, the relation is not clear. Examination of the 
data indicates that most of the values for 8 
fall between 2.0 and 8.0. For garnet hpp a value 
of 6.0 ± 2.0 is used; it will later be shown that 
uncertainty in this parameter has little effect on 
the calculated high-pressure phase material 
properties. 

In addition to y (x) in (3), it is necessary to 
know the energy of transition C::.Etr = Eo .:...­
Eo', the difference between the specific internal 
energies of the low- and high-pressure phases 
at ambient conditions. A method of approxi­
mating this quantity by using the fact that the 
Gibbs free energy is constant across a phase 
transition has been given by McQueen et al . 
[1963]. Assuming that the change in entropy 
results in a negligible specific internal energy 
change in relation to the PC::. V term, we can 
write 

I:::..E tr = Eoh - Eo = I [(pph - pp) / p/ pp) 

+ [(Poh - Po) / Poh pollP/2 (8) 

where the subscript p indicates density to be 
taken at the transformation pressure P. The 
transformation pressure has been estimated 
from the basic Hugoniot compression data and 
is indicated as point A in Figure 4; this point 
corresponds to density pp in (8). Point B, esti­
mated by extrapolating the garnet hpp Hu­
goniot data to the transformation pressure P, 
represents P:. Substituting these values into 
(8), together with the ambient densities of the 
garnet and garnet hpp phases, yields an energy 
of transition of I:::..E'r = 2.13 kbj gj cm3

• Using 
point B rather than the garnet hpp isotherm 
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leads to a slight underestimate of L!.Etr ; how­
ever, the difference is not significant, as will be 
obvious later. 

Once the appropriate thermal properties of 
the high-pressure phase are estimated, it is 
possible to calculate the metastable Hugoniot 
data by using (3). Because values for Co and 8 

appearing in (4) are unknowns to be evaluated, 
an iteration procedure is followed. Initially , 
values for Co and 8 are arbitrarily defined for 
use in the expression to calculate the Griineisen 
parameter. The basic experimental Hugoniot 
data points are then reduced to the equivalent 
data points on the metastable Hugoniot. The 
data on the metastable Hugoniot are .then in­
dicated in the shock velocity-particle velocity 
plane by using (1) and (2). It has been shown 
by Ruoff [1967] that, if data in the U. - u, 
plane can be represented by 

U. = Co + SUp + 8'U/ + ... (9) 

and if an equation of state is assumed that is 
based on a bulk modulus variation with pres­
sure of the form 

KB = KoB + KoB ' p + !KoB " p2 (10) 

the parameters in (9) take the form 

Co = (K/ / Po)' /2 (11) 

8 = (KoB' + 1)/ 4 (12) 

8' (24Cot' 
'[8(7 - KoB' + 4'Y) + 2Kos Kos"l (13) 

where 

Ko 
B' 

KOB" (a 2Ks /a2p)slp _o 

In most cases the uncertainty in the shock 
data precludes inclusion of 8' and therefore of 
Kos" in the data reduction. Note that, if Kos" = 
o in (10), the familiar Murnaghan [1944] 
equation of state results. When the second­
order parameters are neglected, the elastic 
properhes of the material may be determined 
from' the relations 

K/ = POC0
2 (14) 

(aK s / ap)s = 48 - 1 (15) 

where Co and 8 may be evaluated by a linear 

least-squares fit to the metastable Hugoniot 
U. - u, data. In addition, (aKs/ap)s may be 
converted to the familiar mixed derivative by 

(aKB /ap)T = (aKB /ap)B + aT'Yoo (16) 

where T is the absolute temperature. In the 
iteration scheme used in this analysis, new 
values of Co and 8 are generated for each suc­
cessive repetition. These values are used in turn 
to evaluate y(x) in the following iteration. The 
procedure is simply repeated until convergence 
is attained, generally after only two or three 
iterations. 

The results for garnet hpp are indicated in 
Table 3, which examines the effects of varying 
each significant input parameter. The first 
column indicates the basic set of input data 
estimated by using the methods discussed previ­
ously. The remaining columns indicate the ef­
fects of varying each individual factor on the 
final calculated Kos and (aKs/ ap).. values for 
garnet hpp. Generally, each parameter was 
altered by an amount in excess of its estimated 
uncertainty. For the present problem it is ap­
parent that the uncertainties in the estimated 
input parameters have little effect on the calcu­
lated elastic properties. However, a significant 
difference is indicated when the initial density 
of the high-pressure phase is varied, as is evi­
dent from data sets a and b. A 20% uncertainty 
in the calculated K/ value results from a 1.5% 
estimated error in initial density. Clearly, the 
initial density is a very sensitive parameter in 
shock wave high-pressure phase data reduction, 
and the accuracy of the final results is closely 
related to the uncertainty in this factor. 

ELASTIC PRECURSOR ANALYSIS 

It has been shown by Ahrens et al. [1968] 
and Graham [1971] that, when the shock wave 
data for Al20" are corrected for residual stress 
differences in the high-pressure shock state, 
the resulting calculated values of the bulk 
modulus and its first pressure derivative are 
more consistent with published values de­
termined by using ultrasonic methods. The 
'strength effect' occurs when the material is 
shocked to a state along the deformational 
Hugoniot and is still able to support a shear 
stress of magnitude r . The Hugoniot is offset 
above the 'hydrostat ic' Hugoniot by a pressure 
of L!.P" = %r [e.g., Ahrens et al., 1969]. The 

I 

I 


